
EE 508

Lecture 16

Filter Transformations

Lowpass to Highpass

Lowpass to Band-reject



Standard LP to BP Transformation

– Standard LP to BP transform is a variable mapping transform

– Maps jω axis to jω axis

– Maps LP poles to BP poles

– Preserves basic shape but warps frequency axis

– Doubles order

– Pole Q of resultant band-pass functions can be very large for 
narrow pass-band

– Sequencing of frequency scaling and transformation does not 
affect final function 
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Standard LP to BP Transformation
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Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)

All three approaches give same approximation
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Which is most practical to use? Often none of them !

Review from Last Time



Standard LP to BP Transformation
Pole Mappings
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 LP to BP Transformation
Pole Q of BP Approximations
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 LP to BP Transformation
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 LP to BP Transformation

Classical BP Approximations
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Standard LP to BP Transformation

– Standard LP to BP transform is a variable mapping transform

– Maps jω axis to jω axis

– Maps LP poles to BP poles

– Maps LP zeros to BP zeros

– Preserves basic shape but warps frequency axis

– Doubles order

– Introduces additional zeros at origin (number equal half the order)

– Pole Q of resultant band-pass functions can be very large for 
narrow pass-band

– Sequencing of frequency scaling and transformation does not 
affect final function 
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Example 1:  Obtain an approximation that meets the following specifications
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Standard LP to BP Transformation
Frequency and s-domain  Mappings - Denormalized

(subscript variable in LP approximation for notational convenience)
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Recall from above:



Example 1:  Obtain an approximation that meets the following specifications
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(actually  ωA and ωAL that map to -1 and -ωS respectively but show 1 and ωS for convenience) 



Example 2:  Obtain an approximation that meets the following specifications
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Example 2:  Obtain an approximation that meets the following specifications
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Example 2:  Obtain an approximation that meets the following specifications
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Filter Transformations

Lowpass to Bandpass      (LP to BP)

Lowpass to Highpass       (LP to HP)

Lowpass to Band-reject   (LP to BR)

•   Approach will be to take advantage of the results obtained for the 

standard LP approximations 

•   Will focus on flat passband and zero-gain stop-band 

transformations



Flat Passband/Stopband Filters
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LP to BS Transformation

Strategy:  As was done for the LP to BP approximations, will use a variable 

mapping strategy that maps the imaginary axis in the s-plane to the imaginary 

axis in the s-plane so the basic shape is preserved. 
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 LP to BS Transformation
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Standard LP to BS Transformation
Mapping Strategy:

map s=0 to s=± j∞

map s=0 to s= j0

map s=j1 to s=jωA

map s=j1 to s=-jωB

map s=-j1 to s=jωB

map s=-j1 to s=-jωA

FN(s) should 

map ω=0 to ω = ±∞

map ω=0 to ω = 0

map ω=1 to ω = ωA

map  ω=1 to ω= -ωB

map ω= –1 to ω= ωB

 map ω= –1 to ω= -ωA

Variable Mapping Strategy to Preserve Shape of LP function:
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Standard LP to BS Transformation

map ω=0 to ω = ±∞

map ω=0 to ω = 0

map ω=1 to ω = ωA

map  ω=1 to ω= -ωB

map ω= –1 to ω= ωB

 map ω= –1 to ω= -ωA



Standard LP to BS Transformation

Mapping Strategy: consider variable mapping transform
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Comparison of Transforms
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Standard LP to BS Transformation
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)
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Standard LP to BS Transformation
Un-normalized Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)
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Standard LP to BS Transformation
Pole Mappings

Can show that the upper hp pole maps to one upper hp pole and one lower hp pole 

as shown.  Corresponding mapping of the lower hp pole is also shown

Re

Im

Re

Im

 0BPH LBPHω ,Q

 0LPN LPω ,Q

 0BPL LBPLω ,Q

• Poles lie on a constant-Q line

• Zeros at ± j1 (normalized) or at ±jωM (un-normalized) of multiplicity n



 LP to BS Transformation
Pole Q of BS Approximations
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Standard LP to BS Transformation
Pole Mappings
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Standard LP to BS Transformation

•   Standard LP to BS transformation is a variable mapping transform

•  Maps jω axis to jω axis in the s-plane

•  Preserves basic shape of  an approximation but warps frequency axis

•  Order of BS approximation is double that of the LP Approximation

•  Pole Q and ω0 expressions are identical to those of the LP to BP transformation

•  Pole Q of BS approximation can get very large for narrow BW 

•  Other variable transforms exist but the standard is by far the most popular
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Filter Transformations

Lowpass to Bandpass      (LP to BP)

Lowpass to Highpass       (LP to HP)

Lowpass to Band-reject   (LP to BR)

•   Approach will also be to take advantage of the results obtained for 

the standard LP approximations 

•   Will focus on flat passband and zero-gain stop-band 

transformations



Flat Passband/Stopband Filters

ω

( )T j

ω

( )T j

ω

( )T j

ω

( )T j

Lowpass Bandpass

Highpass Bandreject



LP to HP Transformation

Strategy:  As was done for the LP to BP approximations, will use a variable 

mapping strategy that maps the imaginary axis in the s-plane to the imaginary 

axis in the s-plane so the basic shape is preserved. 
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Standard LP to HP Transformation

Mapping Strategy:

map s=0 to s=± j∞

map s=j1 to s=-j1

map s= –j1 to s=j1

FN(s) should 

map ω=0 to ω=∞

map ω=1 to ω=-1

map ω= –1 to ω=1

Variable Mapping Strategy to Preserve Shape of LP function:
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Standard LP to HP Transformation

Mapping Strategy: consider variable mapping transform
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Comparison of Transforms
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 LP to HP Transformation
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Standard LP to HP Transformation
Frequency and s-domain Mappings

(subscript variable in LP approximation for notational convenience)
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Standard LP to HP Transformation
Pole Mappings
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Claim:  With a variable mapping transform, the variable mapping naturally

defines the mapping of the poles of the transformed function



Standard LP to HP Transformation
Pole Mappings
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Standard LP to HP Transformation
Pole Mappings
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Highpass poles are scaled in magnitude

but make identical angles with imaginary 

axis

HP pole Q is same as LP pole Q

Order is preserved



Standard LP to HP Transformation
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Stay Safe and Stay Healthy !



End of Lecture 16
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